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Introduction



Introduction I
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Figure 1: Diffusion of the ends of DNA after a double strand break. Image taken from [1].
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Introduction II

Figure 2: Model for the diffusion of the ends of DNA after a double strand break. Image taken
from [2].
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Introduction III

Figure 3: Results from the model for the diffusion of the ends of DNA after a double strand
break. Image taken from [2].
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Introduction IV

The diffusion and random walk problem was formulated as follows:

A man starts from a point O and walks l yards in a straight line; he then turns
through any angle whatever and walks another l yards in a second straight line.
He repeats this process N times. I require the probability that after N of these
stretches he is at a distance between r and r + δr . [3, 4].

A realization of such a process is shown below

Figure 4: Snapshot of a random walk in two dimensions.
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Introduction V

Lord Rayleigh pointed out the connection between this problem and an earlier paper of
his published in 1880 concerned with sound vibrations. Rayleigh pointed out that, for
large values of N, the answer is given by

2
Nl2

e−r2/Nl2 rδr .

where r is the distance and l sets the scale.

1919-21 the lattice random walk or Polya walk was introduced by George Polya [4]. Let

Zd = {(x1, x2, ..., xd )|x i ∈ Z} (1)

denote a d-dimensional integer lattice. Here the superscript denotes the components.
Also the notation (x , y , z) etc. will be used. We will use subscripts to enumerate the
elements of Zd : x1, x2, ..., xN , where xi = (x1

i , x
2
i , ..., x

d
i ). Consider a starting point X

on the lattice. The process described above for N steps could be described by

SN = X + X1 + X2 + ...+ XN (2)
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Introduction VI

where the Xi are elements of Zd and independent and identically distributed (iid)
random variables.

Let ek be the vector where all elements are 0 except for the k-th element which is 1.
Then (e1, ..., ed ) is a basis for Zd . With this we have

P(Xi = ek ) = P(Xi = −ek ) =
1
2d

. (3)

We can define the random walk as a time-homogeneous Markov chain with state
space Zd and transition probability

p(x , y) := P(Sn+1 = y |Sn = x) =
1
2d

, y − x ∈ {e1, ..., ed} . (4)
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Introduction VII

Figure 5: A random walk on a two dimensional lattice.
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Diffusion



Diffusion of a Particle I

One approach to diffusion is to start with the master equation. Let us look at how the
probability P(x , t) for finding a particle at position x at time t evolves. We assume
that the particles needs to change place. Thus the probability changes because there
are jumps to the next position x − a and x + a as well was jumps from those positions
(one dimensional). Hence there is a flow in and out of the position x

∂

∂t
P(x , t) = P(x + a, t)W (x + a→ x) + P(x − a, t)W (x − a→ x)

− P(x , t)W (x → x + a)− P(x , t)W (x → x − a) , (5)

where

W (x → x ± a) = W (x ± a→ x) =
Γ

2
, (6)

with Γ being the number f jumps per unit time. Equation 5 is called the master
equation.

To solve the above equation we can expand P(x , t) in x up to second order
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Diffusion of a Particle II

P(x ± a, t) = P(x , t)± a
∂

∂x
P(x , t) +

a2

2
∂2

∂x2 P(x , t) + O(a3) . (7)

Inserting this in Equation (5) and retaining only terms up to second order in a we get

∂

∂t
P(x , t) = Γ

a2

2
∂2P

∂x2 . (8)

Let

D = Γ
a2

2
. (9)

Assuming a symmetry of the lattice Λ we obtain

∂

∂t
P(x, t) =

Γ

6
a2∆P(x, t) , (10)

with the Laplace operator ∆. Note, since the dimensions are not coupled, we have
generalized the approach.
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Diffusion of a Particle III

We now calculate the second moment of the distribution P yielding the average
distance squared that the random walker walked away from the origin, which we take
to be at 0

〈x2〉 =

∫ ∞
−∞

x2P(x , t)dx

∂

∂t
〈x2〉 =

∫ ∞
−∞

x2 ∂

∂t
P(x , t)dx

=
a2

2
Γ

∫ ∞
−∞

x2 ∂2

∂x2 P(x , t)dx

= a2Γ

∫ ∞
−∞

P(x)dx

= 2D . (11)

Hence we get

〈x2〉 = 2Dt , (12)

i.e. the mean square displacement is proportional to time (Einstein relation [5]).
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Diffusion of RibosomeDiffusion of Streptavidin
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Figure 6: Accessibility and diffusion of transcription factor complexes into 1Mbp chromatin
domains. NLS-streptavidin-Cy5 steady state distribution in mouse cells expressing MeCP2-GFP
to label heterochromatin. TOP: Panels A) A cell immediately after microinjection, B) The
same cell as in A) but 12 min later, the complexes have been transported into the nucleus ,C)
A cell with aggregations of MeCP2 labelled centromeric heterochromatin structures. CENTER:
Model with 1000 diffusing particles. BOTTOM: Simulation results. Taken from Odenheimer
and Heermann, 2004.
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Brownian Particle I

Let us now look at the Brownian particle problem [6, 7] and first consider time scales.

Collision of solvent molecules with mass m and radius a with each other:

τc ∼
a√

kT/m
. (13)

Momentum relaxation time τm for t � τc :

Assuming that the particle has an initial velocity v0, what is the time for the
particle to be at velocity 0 due to friction. The viscous force on the particle is
fv(t) thus (Stoke’s law for a particle in fluid)

dp

dt
= −fv(t) (14)

and hence

τm =
m

f
. (15)

The diffusive or Brownian time scale is thus t � τm. Thus the net displacement
becomes independent of its mass.
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Brownian Particle II

m

Figure 7: Brownian particle model visualization

The equation of a Brownian particle can hence be written as the effect of the
systematic force F and a random force ξ acting of the particle by the collisions

m
dv

dt
= F + σξ(t) (16)

with
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Brownian Particle III

ξ(0) = 0 (17)

〈ξ(t)〉 = 0 (18)

〈ξ(t)ξ(t′)〉 = δ(t − t′) . (19)

Hence the total force on the particle fluctuates with a typical autocorrelation time τ .

Considering again the special case of particle in a fluid we can write the above
equation as the Langevin equation

dv(t)

dt
= −γv(t) + σξ(t) (20)

with γ being the Stoke’s coefficient and

σ2 =
2kTγ

m
(21)

the diffusion coefficient.

Let us rewrite Equation 20 as
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Brownian Particle IV

dv(t)

dt
= −

γ

m
v(t)dt +

1
m

dW (t) (22)

where dW (t) = ξ(t)dt. Consider

∫ t

0
f (s)dv(s) = −

γ

m

∫ t

0
f (s)v(s)ds +

1
m

∫ t

o
f (s)dW (s) (23)

with arbitrary function f (t). Assume f (t) = 1, then

v(t)− v(0) = −
γ

m

∫ t

0
v(s)ds +

1
m

[W (t)−W (0)] (24)

= −
γ

m
[x(t)− x(0)] +

1
m

[W (t)−W (0)] (25)

Divide the time t into intervals [tk , tk+1] , t0 < t1 < · · · < tn. Then

W (t)−W (0) =
n∑

k=1

(W (tk )−W (tk−1)) . (26)
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Brownian Particle V

We may assume that W has the Markov property as the particle is subject to many
random hits from the environment particles. Further, the average (see above) is
assumed to be zero. Then

W (t) = W (0) +

∫ t

0
ξ(s)ds (27)

will be a continuous function. Since we can make the intervals small due to the high
frequency collisions, W(t) is a Markov process. Note further that

W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tn)−W (tn−1) (28)

are independent, stationary with zero mean and iid. Hence W must be Gaussian
(Wiener process).
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Brownian Particle: Box-Muller I

What we need to numerically treat the Brownian particle problem is a random number
generator delivering gaussian random numbers. One possibility is the Box-Muller
algorithm. The foundation for this method is the transformation theorem

Theorem
Let X be a random variable with density function f and distribution F . Let

h : S → B

a differentiable strong monotone function with S ,B ⊆ R.

Y := h(X) is a random variable. The distribution of Y is

F (h−1(y)) for monotonically increasing h (29)

1− F (h−1(y)) for monotonically decreasing h (30)

If h−1 is absolutely continuous for almost all y then

f (h−1(y))

∣∣∣∣d−1(y)

dy

∣∣∣∣
is the density of h(X ).
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Brownian Particle: Box-Muller II

As an application we choose S = [0, 1]2 and the density f = 1 on S . The
transformation we choose as

{
h1(x1, x2) := y1 =

√
−2 log x1 cos(2πx2)

h2(x1, x2) := y2 =
√
−2 log x1 sin(2πx2)

(31)

with the inverse h−1

{
x1 = exp{− 1

2 (y2
1 + y2

2 }
x2 = 1

2π arctan y2
y1

(32)

and thus

∂(x1, x2)

∂(y1, y2)
= −

1
2π

exp
{
−
1
2

(y2
1 + y2

2 )

}
. (33)
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Brownian Particle: Box-Muller

Algorithm 1 Box-Muller Algorithm

1: generate X1 ∈ [0, 1] uniform and X2 ∈ [0, 1] uniform
2: θ = 2πX2 and q =

√
−2 logX1

3: Y1 = q cos θ and Y2 = q sin θ

Below is an implementation of this algorithm in Python

1
w = -math.log(random.random ())

3 phi = (random.random () -0.5)*math.pi
x = 2*math.sqrt(w) * math.sin(phi)

Code 1: Box-Muller algorithm for gaussian random numbers
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Figure 8: Distribution of the random numbers generated by the Box-Muller algorithm with
100000 numbers.
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Figure 9: Distribution of the random numbers generated by the Box-Muller algorithm with
100000 numbers as a QQ-plot.
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Diffusion of Macromolecules I

Figure 10: Polymer (macromolecule) model for the zinc finger protein.
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Diffusion of Macromolecules II
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Figure 11: Polymer monomer and angle definition.

We can describe the interactions of a polymer using the Edwards-Hamiltonian which
assumes the potential energy to be composed of two different terms

U({R}) = Uc ({R}) + Uex ({R}) (34)

where Uc ({R}) is the entropic, harmonic term. It guarantees the connectivity of the
chain. The term Uex ({R}) accounts for the excluded volume interaction. To describe
the dynamics we can regard the monomers as classical Brownian particles which are
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Diffusion of Macromolecules III

immersed in a solvent and interact via the potential (34). The solvent is described by
the velocity field u(r , t) and assumed to be incompressible. The motion of the fluid
couples to the trajectories Rn(t) of the monomers by dissipative forces. If the velocity
of monomer n departes from the velocity u(Rn(t), t) of the fluid at the monomer’s
position, it experiences a frictional force exerted by the solvent. This friction is
characterized by a bare friction constant ζ.

The equation of motion for the monomers is then given by

ζ
d

dt
Rn(t) = ζu(Rn(t), t)−

∂U({R})
∂Rn

+ ξn (35)

where ξn(t) is the fluctuating Brownian force on monomer n exerted by the solvent
molecules with the usual property

〈ξn(t)ξm(t′)〉 = 2ζkbTδn,mδ(t − t′) . (36)

The presence of N monomers give rise to additional stresses due to the presence of the
forces Fn(t) = − ∂U({R})

∂Rn
on monomer n at time t. The dynamics of the flow field is

described by fluctuating hydrodynamics for an incompressible fluid. This can be
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Diffusion of Macromolecules IV

described by the Navier-Stokes equation. Let ρs denote the density and ηs the
viscosity of the fluid then

ρs

[
∂u(r, t)

∂t
+ u(r, t)∇u(r, t)

]
= ζs ∆u(r, t)−∇p(r, t) (37)

−
N∑

m=1

∂U({R})
∂Rm

δ(r − Rn(t)) + f(r, t)

with p being the pressure. f(r, t) is a random force with

〈fn(t)fm(t′)〉 = 2ηs kbTδ(r − r′)δ(t − t′) . (38)

We now allow for an external flow field uext(r, t). The field then can be written as a
superposition

u(r, t) = uext(r, t) +
N∑

n=1

Ω(rRn(t))Fn(t) + uf(r, t) (39)
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Diffusion of Macromolecules V

where Ω is the Oseen tensor

Ω(r) =
1

8πηs r
(1 + r̂r̂†) (40)

linked to the random force contribution uf(r, t) via

〈uf(r, t)uf(r
′, t′)〉 = 2kbT Ω(r − r′)δ(t − t′) . (41)

Define now the mobility matrix

Mn,m(r) ≡ δn,m1 + ζ(1− δn,m)Ω . (42)

With this Equation 35 can be written as

ζ(
d

dt
Rn(t)− γ̇(t)Rn(t)) = −

N∑
m=1

Mn,m(Rn(t)− Rm(t))
∂U({R})
∂Rn

+ ηn(Rn, t) (43)

where
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Diffusion of Macromolecules VI

ηn(rn, t) ≡ ξn(t) + ζuf(r, t) . (44)
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Rouse Model I

We start off our treatment of the dynamics of a polymer investigating the dynamics of
the Gaussian chain model which is know as the Rouse dynamics [8]. That is, we are
neglecting the effects coming from the excluded volume interaction and we assume no
hydrodynamics interactions for the moment with zero shear. Under these assumptions
our starting point is

ζ
d

dt
Rn(t) = −

N∑
m=1

∂U({R})
∂Rm

+ ξn(t) (45)

with

〈ξn(t)ξm(t′)〉 = 2ζkbTδn,mδ(t − t′) . (46)

Recall that within the gaussian model we have

P(R1, . . . ,RN ) =

(
3

2πb2

) 3
2 N

exp

(
−

N∑
n=1

3
2b2 (Rn − Rn−1)2

)
. (47)

and obtain with Equation 45
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Rouse Model II

dRn

dt
= −

3kB T

γb2 (2Rn − Rn−1 − Rn+1) + ξn (48)

where we have assumed that D = kB T/ζ is independent on Rn. There are two special
case: the two end monomers so that in total we have

dR0

dt
= −

3kB T

ζb2 (R0 − R1) + ξ0 (49)

dRn

dt
= −

3kB T

ζb2 (2Rn − Rn−1 − Rn+1) + ξn (50)

dRN

dt
= −

3kB T

ζb2 (RN − RN−1) + ξn (51)

〈ξn(t) · ξm(t′)〉 = 6Dδn,mδ(t − t′) . (52)

Before we embark to solve these equations it is clear that for very large times the
chain as a whole must diffuse. To describe this motion we use the radius of gyration
for which we find
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Rouse Model III

dRG

dt
=

1
N + 1

N∑
n=0

ξn (53)

with the formal solution

RG (t) = RG (0) +
1

N + 1

∑
n

∫ t

0
dτξn(τ) . (54)

This can be used to calculate the mean square displacement

〈(RG (t)− RG (0))2〉 = 〈
∫ t

0
dτ

∫ t

0
dτ ′

(
1

N + 1
.
∑

n

fn(τ)

)
·
(

1
N + 1

∑
m

ξm(τ ′)

)
〉(55)

=
6D

N + 1
t (56)

= 6DG t . (57)

From this we recover the expected result that the chain as a whole diffuses just like a
single particle centered around the radius of gyration
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Rouse Model IV

DG = D/N = kB T/Nζ . (58)

Note, that the diffusion constant is renormalized by the chain length.

To solve the equations of motion (52) we assume periodic boundary conditions

Rn = Rn+N (59)

which gives rise to the possibility to expand into a Fourier series

Xk =
N∑

n=1

Rn exp(−ikn) . (60)

That is in the absence of external forces, shear etc. the chain can be treated using a
normal mode analysis. The 0 mode has already been treated above. Specifically we
can use

Rn(t) = X(t) cos(an + b) . (61)
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Rouse Model V

Recall that the following relation holds

1
N + 1

N∑
n=0

cos
(

kπ

N + 1
(n +

1
2

)

)
= δk,00 ≤ k < 2(N + 1) (62)

and thus

1
N + 1

N∑
n=0

cos
(

kπ

N + 1
(n +

1
2

)

)
=

1
2(N + 1)

sin(kπ)

sin
(

kπ
2(N+1)

) . (63)

The equations of motion for the Fourier coefficients are then given by

dX
dt

cos b = −
3kT

ζb2 {cos b − cos(a + b)}X (64)

dX
dt

cos(na + b) = −
3kT

ζb2 4 sin2
(
1
2

a

)
cos(na + b)X (65)

dX
dt

cos(Na + b) = −
3kT

ζb2 {cos(Na + b)− cos((N − 1)a + b)}X (66)
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Rouse Model VI

where we have used the addition theorems for the geometric functions

2 cos(na + b)− cos((n − 1)a + b)− cos((n + 1)a + b)

= cos(na + b){2− 2 cos a} = cos(na + b)4 sin2
(
1
2

a

)
. (67)

Further, it is clear that the above introduced parameters a an b can not be
independent. We must have

cos b − cos(a + b) = 4 sin2
(
1
2

a

)
cos b (68)

cos(Na + b)− cos((N − 1)a + b) = 4 sin2
(
1
2

a

)
cos(Na + b) (69)

or
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Rouse Model VII

cos(a− b) = cos b (70)

cos((N + 1)a + b) = cos(Na + b) . (71)

We find independent solutions from

a− b = b (72)

(N + 1)a + b = k2π − Na− b . (73)

So, finally

a =
kπ

N + 1
, b =

1
2

a =
kπ

2(N + 1)
. (74)

We can now write

Rn = X0 + 2
N∑

k=1

Xk cos
(

kπ

N + 1
(n +

1
2

)

)
. (75)
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Rouse Model VIII

and invert this to yield the Fourier coefficients

Xk =
1

N + 1

N∑
n=0

Rn cos
(

kπ

N + 1
(n +

1
2

)

)
. (76)

The equations of motion are then given by

dXk

dt
= −

3kB T

ζb2 4 sin2
(

kπ

2(N + 1)

)
Xk + ξk (77)

〈ξ0(t) · ξ0(t′)〉 =
6D

N + 1
δ(t − t′) (78)

〈ξk (t) · ξk′ (t′)〉 =
3D

N + 1
δk,k′δ(t − t′)k 6= 0 (79)

with the abbreviation

ξk =
1

N + 1

N∑
n=0

ξn cos
(

kπ

N + 1
(n +

1
2

)

)
. (80)
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Rouse Model IX

These are 3(N + 1) independent stochastic differential equations. Coming back to the
zero mode we have

RG = X0 (81)

and

dX0

dt
= ξ0 (82)

〈ξ0(t) · ξ0(t′)〉 = 6
D

N + 1
δ(t − t′) . (83)

To make further progress we assume that only the large wavelength modes will
contribute significantly to our results so that we use

dXk

dt
= −

1
τk

Xk + ξk (84)

〈ξk (t) · ξk (t′)〉 =
3D

N + 1
δkk′δ(t − t′) . (85)
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Rouse Model X

with τk given by

τk =
ζb2(N + 1)2

3π2kB T

1
k2 =

b2(N + 1)2

3π2D

1
k2 . (86)

We can now calculate the mean square displacement

〈(Rn(t)− Rn(0))2〉 = 〈(X0(t)− X0(0))2〉

+4
N∑

k=1

〈(Xk (t)− Xk (0))2〉 cos2
(

kπ

N + 1
(n +

1
2

)

)
(87)

= 6DG t

+
4b2

π2 (N + 1)
N∑

k=1

1
k2 (1− e−tk2/τ1 ) cos2

(
kπ

N + 1
(n +

1
2

)

)
.(88)

We need to distinguish two cases. If t is very large, i.e. t � τ1, the first term will
dominate, yielding

〈(Rn(t)− Rn(0))2〉 = 6DG t t � τ1 . (89)
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Rouse Model XI

Assume now t � τ1. In this case we can neglect the diffusion of the chain as a whole.
Averaging over all monomers, and replacing the sum over k by an integral we get

1
N + 1

N∑
n=0

〈(Rn(t)− Rn(0))2〉 =
2b2

π2 (N + 1)

∫ ∞
0

dk
1

k2 (1− e−tk2/τ1 )

=
2b2

π2 (N + 1)

∫ ∞
0

dk
1
τ1

∫ t

0
dt′e−t′k2/τ1

=
2b2

π2
(N + 1)

τ1

1
2
√
πτ1

∫ t

0
dt′

1
√

t′
(90)

with the final result

〈(Rn(t)− Rn(0))2〉 =

(
4kB Tb2

3πζ

) 1
2

t
1
2 t � τ1 . (91)

So, at short times the mean square displacement of a typical monomer goes like the
square root of t. Essentially we have used the expansion
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Rouse Model XII

1− e−x ≈ x (92)

and for the second case

∫ π

−π
dk →

∫ ∞
−∞

dk (93)

With

∫ ∞
0

dx
1

x2 (1− ex2
) =
√
π . (94)

The examination of the various mean-square displacements gives insight in the
dynamic behaviour of polymer systems [9]. For this we define two different
displacements: the mean-square displacement of the monomers in the center of the
chains

g1(t) ≡
〈[

RN/2(t)− RN/2(0)
]2〉

, (95)

and the mean-square displacement of the center of mass of the chains,
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Rouse Model XIII

g3(t) ≡
〈

[RCM(t)− RCM(0)]2
〉
. (96)

This is shown in Figure 12 for g1

20001000200
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g 1(t
) [

Å2 ]
g1(t)
~t0.5

~t0.29

~t0.5

~t

τe
τR τd

dT
2=745Å2

Figure 12: Diffusion of a polymer. Image taken from [10].
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Rouse Model XIV

Within the treatment of the crossover from Rouse behaviour (with excluded-volume
interaction) to reptation dynamics (see later) it is convenient to define certain
relaxation times τ1, τ2, τ3, τ4 from intersection points of the curves of the several
mean square displacements as follows:

g1(τ1) = < R2
G > (97)

g2(τ2) = 2/3 < R2
G > (98)

g3(τ3) = g2(τ3) (99)

g4(τ4) = < R2
G > . (100)

43 / 88



Rouse Model XV
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Figure 13: g1 to g4 as defined in 100. Image taken from [10].
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Rouse Model XVI

In the ideal Rouse model for noninteracting Gaussian coils all these relaxation times
are proportional to each other: τ2/τ1 = 0.846, τ3/τ1 = 3.112, τ4/τ1 = 0.279). These
universal rations are reproduces nicely by the data in Figure 13.

We now introduce an effective chain length [10]

Ñ = (N − 1)
[
< l2 >3/2 Φ

]−1/(3ν−1)
(101)

which leads to a crossover scaling law for relaxation times τ

W τ

N1−2ν = τ̃(Ñ) . (102)

Figures 14, 15 and 16, show the consistency of Equations 101 and 102.
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Rouse Model XVII
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Figure 14: Log-log plot of the scaled relaxation times τ1W/N1+2ν vs. Ñ. Np = N + 1. Image
taken from [10].
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Rouse Model XVIII
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Figure 15: Log-log plot of the scaled relaxation times τ2W/N1+2ν vs. Ñ. Np = N + 1. Image
taken from [10].
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Rouse Model XIX
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Figure 16: Log-log plot of the scaled relaxation times τ3W/N1+2ν vs. Ñ. Np = N + 1. Image
taken from [10].
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Rouse Model XX

The scaling plots (see Figures 14, 15, and 16) show a crossover from a Rouse to a
reptation regime.
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Random Walks



Random Walk I

We assume a lattice. For simplicity we take a simple square lattice [11, 12].

On this lattice a particle or walker is placed. The walker regards this initial
position as the origin.

The walker draws a random number and decides, according to the drawn random
number, to go to a new position on the lattice.

The new position must be one of the nearest neighbours, and each of the
neighbours has the same probability to be visited.

Once the walker is at the new position, the walker regards this position as his new
origin. In other words, he immediately forgets where he came from.

Every step is made as if it is the first step.

All steps are then independent of each other.

It is assumed that in the array random are stored numbers which are uniformly
distributed in the interval (0, 1).

A random number from the array is then multiplied by 4 and converted to an
integer value. This integer value can either be 0, 1, 2 or 3 labeling the four
possible directions or nearest neighbours on the square lattice.
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Random Walk II

The numbers 0, 1, 2 and 3 are uniformly distributed as long as the numbers in the
array random are so distributed. Depending on the direction the random number
points to, the walker occupies the appropriate position on the lattice by
increasing or decreasing the x or y variable.

The variables xn and yn hold the new position of the random walker. Page 1 of 1random-walk1.c
Printed For: Heermann

/* ---- Choose a new nn site ---- */
i = floor(random[index++]* 4.0);
switch (i) {
   case 0: xn = x-1;
           yn = y;
           break;
   case 1: yn = y-1;
           xn = x;
           break;
   case 2: yn = y+1;
           xn = x;
           break;
   case 3: xn = x+1;
           yn = y;
           break;
} /* ---- switch i ---- */
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1D Random Walk

Figure 17: Examples of random walks in one dimension.
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Random Walk Contact Map I
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Figure 18: Number of self-contacts for the random walk.

53 / 88



Random Walk Contact Map II

Random Walk: Contact Map in d=2 for N=100

"rw_complex.dat.heat.dat" using 1:2:3
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Figure 19: Contact map for the random walk.
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Let us assume that the walker performed N steps. This constitutes one
realization of a random walk.

We may now be interested in computing properties of such a walk. From just one
realization we cannot draw any conclusion since the walk may be atypical. We
need to generate many walks, calculate for every walk the desired property and
then average over the results.

The point which we want to make is that the generation of the samples, i.e., all
the realizations of random walks are generated independently. Let Ai be the
observable property computed for the i-th realization of a random walk. We
define the average, or expectation value for the observable A, denoted by <A>,
as the arithmetic mean over all Ai

<A> =
1
n

n∑
i=1

Ai . (103)
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Gaussian Walk

Algorithm 2 Gaussian Walk

1: for n_cycles do
2: choose initial site x0

3: for length_of _walk do
4: Draw random displacement ∆x from a normal distribution
5: xi+1 = xi + ∆x

6: end for
7: Compute property of the walk
8: end for
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Levy Random Walks I

Levy flights (anomalous diffusion processes) are α-stable Levy processes. The hallmark
of these processes is that they have an infinite variance (expect for the reduction to
the gaussian case α = 2). Furthermore they are scale-invariant and self-similar (for a
review see [13]).
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Gaussian and Levy Random Walks

import random
2 import math

4 def rng(alpha , beta , c, delta):
# Validation of the parameters

6 if (alpha < 0.1 or alpha > 2):
x = float(’nan’)

8 return x
if (abs(beta) > 1):

10 x = float(’nan’)
return x

12 w = -math.log(random.random ())
phi = (random.random () -0.5)*math.pi

14 # Box -Muller Algorithm for the Gaussian case
if (alpha == 2):

16 x = 2*math.sqrt(w) * math.sin(phi)
x = delta + c*x

18 return x
if (beta == 0.0):

20 # This is Cauchy
if (alpha == 1):

22 x = math.tan(phi)
else:

24 # Levy case
inva = float (1.0/ alpha)

26 x = math.pow((math.cos((1.0- alpha)*phi)/w) ,(inva - 1.0)) \
* math.sin(alpha * phi) / math.pow(math.cos(phi),inva)

28 return x
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Gaussian and Levy Random Walks

random.seed (411)
2 # Levy Random Walk (flight) generation

alpha = 1
4 beta = 0.0

delta = 0.0
6 c = 1

n = 100000
8

x = 0
10 y = 0

12 for r in range(n):
x += rng(alpha ,beta ,c,delta)

14 y += rng(alpha ,beta ,c,delta)

16 # Gaussian Random Walk generation
alpha = 2

18 beta = 0.0
delta = 0.0

20 c = 1
n = 100000

22
x = 0

24 y = 0

26 for r in range(n):
x += rng(alpha ,beta ,c,delta)

28 y += rng(alpha ,beta ,c,delta)
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Gaussian and Levy Random Walks I

Figure 20: The left panel shows the gaussian random walk and the right panel a Levy walk
with parameter α = 1.66. Both walk are 100000 steps long
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Gaussian and Levy Random Walks I
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Figure 21: Fractional random walks in D = 2 for σ = 1, µ = 0, H = 0.1, 0.5 and 0.9
respectively from left to right starting with the same seed for the random number generator.
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Fractional Random Walk

2 N = int(pow(2,max_steps))
x = [0.0] * (N+1)

4 x[N] = sigma * the_rng.generate_random_number ()
D = N

6 d = int(D/2)
level = 1

8 while ( level <= max_steps ):
dispi = sigma * pow(0.5, level*H)*sqrt (0.5)*sqrt(1-pow (2.0 ,2.0*H-2.0))

10 for i in range(d,int(N-d)+1,D):
x[i] = 0.5 * (x[i-d] + x[i+d])

12 for i in range(0,int(N+1),int(d)):
x[i] = x[i] + dispi * the_rng.generate_random_number ()

14 D = int(D/2)
d = int(d/2)

16 level += 1

Code 2: Fractional Random Walk
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Figure 22: The left panel shows the result of the Box-Muller algorithm for the generation of
gaussian distributed random numbers. The middle panel shows the case of generation of
Cauchy distributed random numbers. The right panel shows the general case. Shown are the
results for a sample size of 100000.
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Geometric Random Walk I

The essential idea underlying the random walk for real processes is the assumption of
mutually independent increments of the order of magnitude for each point of time.
However, economic time series in particular do not satisfy the latter assumption.
Seasonal fluctuations of monthly sales figures for example are in absolute terms
significantly greater if the yearly average sales figure is high. By contrast, the relative
or percentage changes are stable over time and do not depend on the current level of

Analogously to the random walk with i.i.d. absolute increments Zt = Xt − Xt−1, a
geometric random walk {Xt ; t ≥ 0} is assumed to have i.i.d. relative increments

Rt =
Xt

Xt−1
, t = 1, 2, . . . .

For example, a geometric binomial random walk is given by

Xt = Rt · Xt−1 = X0 · Πt
k=1 Rk (104)

where X0,R1,R2, . . . are mutually independent and for u > 1, d < 1 :

P(Rk = u) = p , P(Rk = d) = 1− p .
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Geometric Random Walk II

Given the independence assumption and E[Rk ] = (u− d)p + d it follows from equation
E[Xt ] increases or decreases exponentially as the case may be E[Rk ] > 1 or E[Rk ] < 1

E[Xt ] = E[X0] · (E[R1])t = E[X0] · {(u − d)p + d}t .

If E[Rk ] = 1 the process is on average stable, which is the case for

p =
1− d

u − d
.

For a recombining process, i.e. d = 1
u
, this relationship simplifies to

p =
1

u + 1
.

Taking logarithms in equation yields:

lnXt = lnX0 +
t∑

k=1

lnRk .
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Geometric Random Walk III

X̃t = lnXt is itself an ordinary binomial process with starting value lnX0 and
increments Zk = lnRk for which hold:

P(Zk = ln u) = p, P(Zk = ln d) = 1− p .

For t large, X̃t is approximately normally distributed, i.e. Xt = exp(X̃t ) is
approximately lognormally distributed.
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Geometric Random Walk

import numpy as np
2 import matplotlib.pyplot as plt

4 plt.title(’Geometric Random Walk’)
plt.xlabel(’time’)

6 plt.ylabel(’displacement ’)

8 mu = 0.0001
sigma = 0.01

10 max_samples = 10

12 for sample in range(max_samples):

14 g = np.random.normal(mu, sigma , size =500)
total_return = (1+g).cumprod ()

16 plt.plot(total_return)

18 plt.show()

Code 3: Geometric Random Walk
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Geometric Random Walk I

Figure 23: Geometric random walks in D = 1 for σ = 0.01, µ = 0.0001
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Self-Avoiding Random Walks

Page 1 of 2saw-algorithm-simple.c
Printed For: Heermann

    while ( sample < sample_size ) {

      /* ==== Reset the walker to the origin ==== */

      w[0][0]   = xc;
      w[0][1]   = yc;
      x         = xc;
      y         = yc;
      l         = 0;
      occupancy = 0;
      walk++;

      return_code = r250( N,ran,mf);

      while ( (l < N)  &&  (occupancy == 0) )  {
        d  = ran[l] * 4;
        switch (d) {
            case 0:  x++;
                     break;

            case 1:  y++;
                     break;

            case 2:  x--;
                     break;

            case 3:  y--;
                     break;

        }

        if ( ( x < 0 ) || ( x == L ) || ( y < 0 ) || ( y == L ) ) {
            /* Random walker not on the lattice */
            exit(-1);
        }

        if ( g[x][y] < walk ) {
            g[x][y] = walk;
            l++;
            w[l][0] = x;
            w[l][1] = y;
            occupancy = 0;
        }
        else {
            occupancy = 1;
        }
      }

      /* ==== Now check if a SAW was generated. If yes, then ==== */
      /* ==== we do the analysis, else we must try again     ==== */

      if ( l == N ) {
        /* ---- we can compute the end-to-end distance etc. ---- */

        x = xc - w[N-1][0];
        y = yc - w[N-1][1];
        end_to_end += x*x + y*y;

        cmx = 0;
        cmy = 0;

The code can be found here
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Self-Avoiding Random Walks: Simple Sampling

Performing the simple sampling simulation it becomes immediately evident that
we have a problem with the simple sampling technique for the self-avoiding
random walk model.

As we increase the number of steps the walker should travel, it becomes harder
and harder to find a walk. In almost all cases the walk terminates earlier because
there is a violation of the self-avoiding condition! (attrition problem).

This shows that the simple sampling, even though being the simplest and perhaps
even most powerful method has clear limitations.
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Self-Avoiding Random Walks: Local Move Algorithms
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Self-Avoiding Random Walks: Reptation Algorithm

Algorithm 3 Basic Algorithm: Reptation Algorithm

1: Assume that we have generated a random walk.
2: Choose one of the end points at random and delete this point.
3: Choose one the end points at random.
4: Add the delete point to the choosen end with a random direction.
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Self-Avoiding Random Walks: Pivot Algorithm I

Let W denote the set of self-avoiding walks of length N on a lattice λ.

Further let G(λ) be the group of lattice symmetries.

The pivot algorithm [14] takes a self-avoiding random walk and pivots the walk to
generate a new walk from the set W such the sequence of generated walks yields
a Markov chain which is aperiodic and irreducible with uniform stationary
distribution π.

The sequence {ωt} is aperiodic and irreducible with uniform stationary
distribution π.

The sequence further is reversible

π(ωi )P(ωi , ωj ) = π(ωj )P(ωj , ωi ) . (105)

Since π is uniform, we need to show that P is symmetric. Suppose there are m

ways to move, with one pivot, from a self-avoiding walk ω to another
self-avoiding walk ω̄. For i = 1, 2, ...,m, consider the pairs (xi , gi ). Each pair
gives a transition, using the pivot algorithm from ω to ω̄.
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Self-Avoiding Random Walks: Pivot Algorithm II

Thus,

P(ω, ω̄) =
m∑

i=1

P(g = gi ) · P(x = xi ) . (106)

Notice that the pairs (xi , g−1
i ), for i = 1, 2, ...,m give one-step transitions from ω̄ and

that P(g = gi ) = P(g = g−1
i ) because g is chosen uniformly. Therefore

P(ω, ω̄) =
m∑

i=1

P(g = gi ) · P(x = xi ) =
m∑

i=1

P(g = g−1
i ) · P(x = xi ) = P(ω̄, ω) .

(107)
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Self-Avoiding Random Walks: Pivot Algorithm III

Figure 24: Pivot move: The rotation is made around the red monomer.
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Self-Avoiding Random Walks: Pivot Algorithm

Algorithm 4 Basic Algorithm: Pivot Algorithm

1: Start with a self-avoiding walk ω0 ∈W .
2: Next choose an integer i uniformly from the set {0, 1, 2, ...,N − 1}. The site con-

nected with this index is the pivot site x = ωt (i).
3: Select a lattice symmetry g uniformly from the symmetry group G .
4: Set ω̄(k) = ωt (k) for k ≤ i , and ω̄(k) = g(ωt (k)) for k〉i .
5: if ω̄ is self-avoiding then
6: ωt+1 = ω̄.
7: else
8: let ωt+1 = ωt .
9: Goto 2. for the next generation t := t + 1.

10: end if
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Diffusion in a Crowded Environment



Diffusion in a Crowded Environment I

The interior of biological cells represents a very dense and crowded environment with a
specific molecular mobility. Intracellular diffusion is hindered by barriers consisting of
large molecules sometimes even immobile tethered large molecules, binding and
collisional interactions. One way of interpreting such a system is to view it as a
disordered system. In general for random walks in media with disordered microscopic
substructures one expects anomalous diffusion where the mean-square displacement
〈∆r(t)2〉 no longer is proportional to the time t:

〈∆r(t)2〉 = Cα tα (108)

with Cα > 0. If 0 < α < 1, then we call the diffusion sub-diffusive, and if α > 1,
super-diffusive; normal diffusion has α = 1.

In biological applications, the prohibited sites may be more or less mobile biomolecules.
Their effect can be taken into account approximately by assuming that also a
prohibited site i allows the walker to move through, with some probability qi . The
reciprocal probability 1/qi then can be interpreted as the lifetime of the barrier, in the
sense that about once during that lifetime the barrier moves away for one time step
before returning to that site. Thus we have still a quenched disorder; with annealed
disorder where all lifetimes are the same, we have normal diffusion, squared distance
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Diffusion in a Crowded Environment II

proportional to time, with a diffusivity reduced by the (slowly) moving barriers. We
now assume that the probability distribution function f (q) for the qi is a power law,

f (q) ∝ 1/qa (109)

with some exponent a between zero and infinity. More quantitatively, for each
prohibited site we determine, when it is visited for the first time by the walker, a
random number r , homogeneously distributed between 0 and 1, and then fix qi for
that site i as

qi = Ar1/(1−a) (110)

with some free parameter A.
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Diffusion in a Crowded Environment III

Figure 25: The figure illustrates for two dimensions at p = pc − 0.5 = 0.0927 and exponent
a = 1/2 the results of one walk after one million time steps. Part a shows the set of sites
which have been tried at least once, and part b shows those sites which have actually been
visited in spite of the barriers. After 8 million steps, all sites were tried, and after 64 million
steps, all sites were visited. One can get anywhere, provided one has enough time.
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Diffusion in a Crowded Environment IV

0 

2.0 

4.0 

6.0 

8.0 

1 

2.1 

4.1 

01 001 0001 00001 

sl
op

e

emit

6110.0 = p ,3^104 ;noisuffidrepus rof scitsitatS

80 / 88



Diffusion in a Crowded Environment V

Figure 26: In three dimensions we have pc = 0.3116. For very small p = 0.0116, squares in the
figure (middle column bottom), we see an overshooting with an effective exponent αeff above
unity at intermediate times; this is not a statistical fluctuation and shows up in all 20
simulated samples. One may call this effect super-diffusion since for more than one order of
magnitude the exponent is above unity. Basically, the positive probability of each barrier to
move away and to let through the random walker means that for sufficiently long times we
always get normal diffusion, α = 1. For times which are not long enough to see this
moving-away of the barriers, but long enough for the walker to explore the whole finite cluster
for p < pc on which it started, we have α = 0. For our moderately small A = 0.01 these
different regimes cannot be reliably separated;
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Excercises I

Exercise 1: Random Walk
Given a Random Walk of length N. What is the probability that the walk
returns to its origin, i.e. that a loop of length N has been formed and how
does it scale with the length N? (Do not get into proving Polya‘s
theorem! Give a back of the envelop estimation.)

Exercise 2: Brownian motion in a harmonic potential
Consider a Brownian particle of mass m in an harmonic potential with
spring force k (ω2

0 = k/m) and random force ξ (Gaussian random process)

dx(t)

dt
= v(t) (111)

dv(t)

dt
=

γ

m
v(t)− ω2

0x(t) +
1
m
ξ(t) . (112)

Develop an algorithm to solve the problem.
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Excercises II

Exercise 3: Geometric Bownian Motion
The time-evolution of an observation S(t) is said to follow the geometric
Brownian motion if the stochastic differential equation holds

dS(t) = µS(t)dt + σS(t)dB(t) (113)

where µ is the drift and σ the standard deviation. Show that

S(t) = S(0) exp
((

µ−
1
2
σ2
)

t + σB(t)

)
is the solution to Equation 113. Examples for this is behaviour is the
motion of pollen grains on still water.

83 / 88



Excercises III

Exercise 4: Average Crossing Number
The Average Crossing Number (ACN) of a random walk of length N is the
expected value over all possible random walks of length N of the expected
value of the crossing number of one of these confirmations over all
possible planar projections. Show that an upper bound for the ACN is

ACN ∼ N2 . (114)

As a matter of fact it can be shown that [15]

ACN ∼ N logN .

Write a program to compute the ACN.
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