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Phase Diagrams



Phase Diagrams I

The phase diagram shows the areas of existence of the phases of a substance
depending on thermodynamic parameters. The simplest phase diagram is obtained for
a symmetrical binary mixture or for the Ising model with up-down symmetry. A phase
diagram for this case is shown in the Figure 2. A similar, albeit inverted diagram is
obtained when molecularly uniform polymers are dissolved in a low-molecular solvent.
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Figure 1: Simple phase diagram for a symmetric mixture of two components.
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Phase Diagrams II

Figure 2: High and low temperature demixing curves of a system of cyclohexan/polystyrene.
The x-axis shows the fraction for polystyrene.
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Phase Diagrams III

Let us consider carbon dioxide as another example. Here the triple point at 5.81 bar is
far above atmospheric pressure. The associated temperature is -57C. Carbon dioxide is
not liquid under normal pressure, but only under increased pressure.
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Figure 3: Phasendiagram for a CO2 mixture.
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Phase Diagrams IV

Another typical phase diagram is shown in Figure 4. Two phases can coexist at the
phase boundaries in the p − T -diagram. At the triple point (p tr,T tr) three phases
coexist, and at the critical point (pc ,Tc ) the difference between the liquid and
gaseous phases disappears.
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Figure 4: Typical phase diagram with a critical point (pc ,Tc ) and triple point.
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Phase Diagrams V

Let us consider the equilibrium between a phase i and a phase j . The coexistence
curve in the p − T diagram is

p = pij (T ) . (1)

Since particles can be exchanged between the two phases, the chemical potentials are
the same

µi

(
T , pij (T )

)
= µj

(
T , pij (T )

)
. (2)

With the transition of ∆Nij particles from phase i into phase j there will be a “latent
heat” ∆Qij

∆Qij = T

{
−
(
∂Si

∂N

)
T ,p

+

(
∂Sj

∂N

)
T ,p

}
∆Nij

= T

{(
∂µi

∂T

)
p

−
(
∂µj

∂T

)
p

}
∆Nij , (3)
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Phase Diagrams VI

where for the pressure (1) was used. The second equation follows from the first in
that entropy and chemical potential appear as the first derivatives of free enthalpy.
Differentiation of (2) along the phase boundary provides

(
∂µi

∂T

)
p

−
(
∂µj

∂T

)
p

= −
{(

∂µi

∂p

)
T

−
(
∂µj

∂p

)
T

}
dpij (T )

dT
. (4)

The derivations of the chemical potential after the pressure can, however, be
computed from the Duhem Gibbs relation ( SdT − Vdp + Ndµ = 0)

(
∂µi

∂p

)
T

=
Vi

Ni
. (5)

With this we obtain the Clausius-Clapeyron equation

∆Qij = −T
dpij (T )

dT
∆Vij , (6)

that relates the latent heat ∆Qij , volume change ∆Vij and slope of the phase
boundary in the (p − T )-diagram.
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Phase Diagrams VII

In the gas space above a liquid, the saturation pressure (vapor pressure) depends on
T , which depends on T (vapor pressure curve). The above equation can be used to
approximate the vapor pressure curve (sublimation curve).

We neglect the volume of the liquid (solid phase) compared to that of the gas phase
and assume that only the binding energy is important for the energy of the liquid

Ef = −εN ε > 0 . (7)

The gas phase is considered the ideal gas of non-interacting particles. Both
assumptions do not apply near the critical point, but are otherwise fulfilled relatively
well.

The latent heat can thus be calculated by integrating the first law

∆Qfg = ∆Eg −∆Ef + pfg

{
δVg −∆Vf

}
≈

{3
2

kB T + ε+ kB T
}

∆N. (8)

For the vapor pressure curve you get (6)
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Phase Diagrams VIII

dp(T )

dT
=

5
2kB T + ε

kB T 2 p(T ) , (9)

and hence

p(T ) = A T
5
2 e−ε/kB T . (10)

From (7) we get µfl = −ε. Since the chemical potentials of the liquid and gaseous
phases must be the same, and since (10) must also satisfy the equations of state of
the gas, the initially undetermined integration constant is A is given by (10).

The binding energy can thus be determined experimentally, at least approximately,
from the vapor pressure curve.
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Phase Diagrams Example

For a binary mixture of A and B atoms with concentrations cA and cB , the two-phase
coexistence line is calculated in a molecular field approximation, which provides a
result similar to the Ising model

MAPLE

restart;
cb:= 1 - ca;
m:= ca - cb;
t:=m/(ln((1+m)/(1-m)));
plot(t,ca=0..1.0,color=black);
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Phase Diagrams I

After this discussion of simple phase diagrams, it is beyond the scope of an
introduction to theoretical biophysics to talk about complicated situations.
Nevertheless, it should not be concealed that there are considerably more complex
situations with many substances or combinations of substances. An example is the
phase diagram for that of the polystyrene and CO2 system in Figure 5.

Figure 5: Phasendiagramm für das System Polystrol-CO2
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Phase Diagrams II

After this general discussion about phase boundaries, let’s take a closer look at the
two-phase area. In Figure 2 we separated the area into the thermodynamically stable
states from the thermodynamically metastable or thermodynamically unstable states
by the coexistence curve. Let us now consider the case in which a system is brought
from a thermodynamically stable state into one which is unstable or metastable. This
is indicated in Figure 6. This so-called quench can be done in different ways. It can
be done by quickly changing the temperature or by switching on a magnetic field.
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Phase Diagrams III
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Figure 6: Generic phase diagram of a system with two components.
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Phase Diagrams IV

First, let’s consider the case where the quench is made in the area between the
coexistence curve and the spinodal. We had marked this area as metastable because
the free energy there does not have an absolute minimum. There is only a relative
minimum with a certain barrier height that separates the metastable minimum value
from that of the absolute minimum. It is found experimentally that this metastable
state is reduced by fluctuations. These fluctuations are droplets. We can try to
understand this degradation of the metastable state by the potty through the
nucleation theory. This theory goes back to Becker and Döring and is essentially a
rate theory. In the simplest formulation, we assume that there are no concentration
fluctuations in the system initially. The system is homogeneous with a certain free
energy. This free energy now corresponds to the metastable state. The system is not
in an equilibrium state with regard to its parameters and is now trying to get into the
equilibrium state through fluctuations in concentration.

Let ns be the number of droplets of size s, Rs be the rate of condensation of atoms
for droplets of size s and R′s the rate of evaporation. The rate

Js (per unit volume), with which the droplets grow from size s zu s + 1 is given by

Js = Rs ns − R′s+1ns+1 (11)

16 / 71



Phase Diagrams V

From this we get the continuity equation

∂ns

∂t
= Js−1 − Js s ≥ 2 (12)

In the stationary state we have

J := J1 = J2 = ... (13)

J is called the nucleation rate. s = 0 is the source and every droplet that is larger
than the critical droplet size (s∗) continues to grow. Hence

J =

(∫
ds

ns Rs

)−1
. (14)
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Phase Diagrams VI

Figure 7: Droplets in a system
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Phase Diagrams VII

Figure 8: Free energy and probability distributions
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Phase Diagrams VIII

Figure 9: Free energy and probability distributions
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Phase Diagrams IX

Figure 10: Free energy and probability distributions
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Phase Diagrams X

Figure 11: Free energy and probability distributions
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Phase Diagrams XI

Figure 12: Free energy and probability distributions

23 / 71



Phase Diagrams XII
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Figure 13: Nucleation barrier modelled by the competition between a surface and a volume
term.
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Phase Diagrams XIII

Let us assume

ns ∝ e−∆F/kB T . (15)

with the implicit assumption that the droplets do not interact. We model the change
in free energy as the competition between a volume and a surface term (c.f. Figure ??)

∆F = s2Γ− s3h (16)

where Γ is the surface tension and h is an abbreviation for a gas/liquid system of
h = ∆ρδµ, the change in density and the change in chemical potential. The change in
free energy has a maximum at

∆F ′ = 2sΓ− 3s2h = 0 (17)

hence at
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Phase Diagrams XIV

s∗ =
2Γ

3h
(18)

Droplets below the maximum size s∗ will predominantly shrink and those above s∗

predominantly grow. The number of droplets s∗ determine the rate of conversion of
the metastable state. Hence

J ∝ n∗s ∝ e
−4 Γ3

27h2 (19)

in units of the Ising model.
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Phase Diagrams XV

Figure 14: The figure shows a snap shop of system undergoing spinodal decomposition.
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Phase Diagrams XVI
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Critical Phenomena I

Critical points can be found not only in the liquid-gaseous phase transition, for
example in the van der Waals equation, but also in magnets, order-disorder phase
transitions, superconductivity and other phase transitions. The behavior of the
respective systems in the vicinity of the critical point is very similar.

Table 1: Critical temperature and critical pressure for some gases.

Material Tc (C) Pc (at)
helium (He) -267,95 2,34

carbon dioxid (CO2) 75,27 31,0
water vapor (H2O) 374,2 225,5

air -140,73 38,5

29 / 71



Critical Phenomena II

We first examine the surroundings of the critical point in the van der Waals theory. At
the critical point Tc , pc ,Vc we have

(
∂p

∂V

)
Tc ,N

= −
(
∂2F

∂V 2

)
Tc ,N

= 0(
∂2p

∂V 2

)
Tc ,N

= −
(
∂3F

∂V 3

)
Tc ,N

= 0. (20)

We expand the free energy (??) in powers of

∆ρ = ρ− ρc =
N

V
−

N

Vc
(21)

and get

F = FvdW(T ,N,Vc )− p0(T ) (V − Vc ) + 1
2 a N (T − Tc ) ∆ρ2

+ 1
3 b N(T − Tc ) ∆ρ3 + 1

4 u N ∆ρ4. (22)
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Critical Phenomena III

The various parameters, in particular a, b and u, are determined by the virial
coefficients b0 and b1. We are interested in |T − Tc | ∼ ∆ρ2. Hence the contributions
proportional of b and u can be dropped and we get the isotherm

p(T , ρ) = p0(T ) + ρ2c
{

a (T − Tc ) ∆ρ+ u ∆ρ3
}

(23)

and the special critical isotherm

p(Tc , ρ) = pc + ρ2c u ∆ρ3. (24)

For the compressibility at the critical density for T > Tc we get

κ−1(T , ρc ) = −V
∂p

∂V
= ρ

∂p

∂ρ
= a ρ3c (T − Tc ) (25)

κ(T , ρc ) diverges at the critical point.

To calculate the properties for T < Tc we need the Maxwell- or double tangent
construction. Neglecting b in (22), F + (V −Vc ) p0 is an even function of ∆ρ and the
density at coexistence is given by the minima of F + (V − Vc ) p0
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Critical Phenomena IV

(T − Tc ) a ∆ρ+ u ∆ρ3 = 0 ; ∆ρ = ±
√

(Tc − T ) a/u. (26)

The compressibility at the coexistence curve is

κ−1 = ρ3c
{

(T − Tc ) a + 3 u ∆ρ3
}

= 2 a ρ3c (Tc − T ). (27)

The compressibility below Tc is finite, however, diverges as one approaches the critical
point.

The specific heat is given by

CV = −T

(
∂2F

∂T 2

)
. (28)
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Critical Phenomena V

For T > Tc and V = Vc only FvdW(T ,N,Vc ) contributes to (22). For T < Tc we
need to take into account ∆ρ according to (26). With this we get

CVc = Creg(T ) = −T

(
∂2FvdW(T )

∂T 2

)
T > Tc

= Creg(T ) + 1
2 N

a2

u
T T < Tc . (29)

The specific heat has a discontinuity at the critical point.

The free energy of a magnet in the vicinity of the critical point (Curie point) can be
developed accordingly

F (T ,N,M) = F0(T ,N) + 1
2 a (T − Tc ) N (M/N)2 + 1

4 u N (M/N)4 + · · · . (30)

M is the magnetization. Odd terms do not occur due to the symmetry. The previous
calculations can be transferred directly to the magnet, where ∆ρ is substituted by
M/N, p − pc and the magnetic field B and κT by the isothermal susceptibility χT .
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In addition to the van der Waals equation of state, Berthelot proposed another
molecular field-like equation of state

P =
8T

3v − 1
−

3
Tv2

(31)

We would like to calculate the critical exponents.

MAPLE

> restart;
> P:=(v,T)->8*T/(3*v-1)-3/(T*v^2);
> p1:=(nu,epsilon)=P(1+nu,1+epsilon)-1;
> aux:=series(8*(1+epsilon)/(2+3*nu)-3/(1+epsilon)/(1+nu)^2-1,

nu=0,4):aux;
> aux1:=(epsilon)->3+4*epsilon-3/(1+epsilon)+(-6-6*epsilon+

6/(1+epsilon))*nu
+(-9*1/(1+epsilon)+9+9*epsilon)*nu^2 +(12*1/(1+epsilon)-
27/2-27/2*epsilon)*nu^3;

> aux2:=series(aux1(epsilon),epsilon=0,2);
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We now get a simplified equation of state with the critical point ε = 0. Since the
curve is symmetrical, the gas and liquid components must be the same:
vg = −vl = v . From this we can get the critical exponent β .

MAPLE

> p:=(nu,epsilon)->-3/2*nu^3+(7-12*nu)*epsilon;
> d1:=(nu,epsilon)->subs(y=nu,diff(p(y,epsilon),y)): d1(nu,epsilon);
> solve(p(v,epsilon)= p(-v,epsilon),v);

Hence β = 1/2 and for the exponent δ we get

MAPLE

> P1:=(rho,T)->8*T*rho/(3-rho)-3*rho^2/T:
> P1(1+xi,1);
> series(8*(1+xi)/(2-xi)-3*(1+xi)^2,xi=0);

the value δ = 3.
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Correlation Functions
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Correlation Functions I

To better understand what is happening near a critical point, we examine the behavior
of the correlation function. We use the so-called average or molecular field
approximation. Let n̂(r) be the density at r and ρ = 〈n̂(r)〉 the average density. Then

〈n̂(r)n̂(r ′)〉c = 〈n̂(r)n̂(r ′)〉 − ρ2 (32)

=
∑

ij

〈δ(r − ri )δ(r ′ − rj )〉 − ρ2 = ρδ(r − r ′) + g(r − r ′).

We saw that the isothermal compressibility is given by

κT =
1

kB Tρ2

∫
〈n̂(r)n̂(0)〉c d3r

=
1

kB Tρ
+

1
kB Tρ2

∫
g(r)d3r . (33)

Since the compressibility diverges at the critical point, but the density ρ remains finite,
the range of the correlations must diverge.
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Correlation Functions II

We consider a gas in a weak spatially inhomogeneous field, which is given by a
potential ϕ(r). This is the Hamilton function

Hϕ = H +
∑

i

ϕ(ri ) =
∑

i

p2i
2m

+
1
2

∑
ij

W (ri − rj ) +
∑

i

ϕ(ri ) (34)

and the density on the presence of a field

〈n̂(r)〉ϕ =
∑

i

Tr δ(r − ri ) e−β(H+
∑

j ϕ(rj ))

Tr e−β(H+
∑

j ϕ(rj ))
. (35)

For a small external potential one get to first order

δ〈n̂(r)〉ϕ = 〈n̂(r)〉ϕ − ρ ≈ −β
∑

j

〈δ(r − ri )
∑

j

ϕ(rj )〉 − ρ
∑

j

〈ϕ(rj )〉


= −βρ

{
ϕ(r) +

∫ ′
g(r − r ′)ϕ(r ′)d3r

}
. (36)
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Correlation Functions III

We want to take the effect of the interaction W (ri − rj ) at least approximately into
account. In addition to the potential ϕ(ri ), the selected particle i is also affected by
the potential for interaction with the other particles

ϕeff(ri ) = ϕ(ri ) +
∑

j

W (ri − rj ) . (37)

The approximation now consists in replacing this potential by an averaged potential,
averaging over the positions of the particles j . Only the deviations from the
homogeneous density δ〈n̂(r)〉ϕ need to be taken into account, since the interaction in
the case of homogeneous density has already been included in the van der Waals
equation. So that is

ϕ̄eff(r) = ϕ(r) +

∫
W (r − r ′)δ〈n(r ′)〉ϕd3r ′ . (38)

In this approximation, the density reads

δ〈n(r)〉ϕ = −βρϕ̄eff(r) . (39)
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Correlation Functions IV

Substituting this with (38) in (36) we get

δ〈n(r)〉ϕ = −βρϕ(r)− βρ
∫

g(r − r ′)ϕ(r ′)d3r ′

= −βρϕ(r) + β2ρ2
∫

W (r − r ′)ϕ(r ′)d3r ′

+β2ρ2
∫

W (r − r ′)g(r ′−′′)ϕ(r ′′)d3r ′d3r ′′ . (40)

However, this must apply to any external potential ϕ(r), and one obtains an integral
equation for the correlation function:

g(r − r ′) = −βρW (r − r ′)

−βρ
∫

W (r − r ′′)g(r ′′ − r ′)d3r ′′ . (41)

Assume the range of interaction to be ξ0. We are interested in distances |r − r ′| � ξ0
and expand g(r ′′ − r ′) around r − r ′
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Correlation Functions V

g(r ′′ − r ′) = g(r − r ′) +
∑
α

(r ′′α − rα)
∂

∂rα
g(r − r ′)

+
1
2

∑
αβ

(r ′′α − rα)(r ′′β − rβ)
∂2

∂rα∂rβ
g(r − r ′) + . . . (42)

We can insert this into (41) obtaining this following integrals

∫
W (r̄)d3 r̄ = −W0 = −2b1kB∫

r̄α W (r̄)d3 r̄ = 0∫
r̄α r̄βW (r̄)d3 r̄ = −δαβW2 = −δαβξ20W0 . (43)

This now gives the differential equation for the correlation function

g(r) = −βρW (r) + βρW0g(r) +
1
2
βρW2∆g(r) , (44)
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Correlation Functions VI

where we need to use ∆ = ∂2/∂2r + 2
r
∂/∂r This equation has for large distances

r � ξ0 the solution

g(r) = g0
1
r

e−r/ξ (45)

with the correlation length

ξ2 =
ξ20

T
2ρb1

− 1
. (46)

With the van der Waals equation (??) we get for the isothermal compressibility

κT = −
1

V (∂p/∂V )
=

(V /N)2 − b20
2 kB b1

1
T

2ρb1
− (1− ρbo )2

. (47)

It should be noted that in the previous derivation, the strongly repulsive portion of the
interaction was not taken into account with sufficient accuracy, and therefore the
divergence of the correlation length does not coincide with the divergence of
compressibility. A treatment similar to the derivation of the van der Waals equation
yields instead of (46)
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Correlation Functions VII

ξ2 =
ξ20

T
2ρb1

− (1− ρb0)2
. (48)

This means that the correlation length diverges precisely where in the van der Waals
equation (∂p/∂V )T = 0, hence where the compressibility diverges. This curve in the
V − T - or ρ− T -diagram is known as the spinodal.

The correlation length diverges at the critical density ρc and for T > Tc we have

ξ =
2
3 ξ0√

(T − Tc )/Tc

(49)

and for T < Tc along the coexistence cureve

ξ =
1
3

√
2 ξ0√

(Tc − T )/Tc

. (50)

Using the results (45, 49, 50) to compute the compressibility (33) we get in the
neighborhood of the critical point for ρ = ρc and T > Tc
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Correlation Functions VIII

κT =
6πg0

ξ20ρ
2
c

(T − Tc )−1 , (51)

hence the same result as in (25) with

g0 = ξ20/6πa . (52)

We can also get an improved estimate of the specific heat from the correlation
function. The starting point is the relation

Cp =
1

kB T
〈(H + pV )2〉cp . (53)

From (22) one obtains with

E = F + T
∂F

∂T
(54)

in the neighborhood of the critical point

(E + pV )− (Ec + pc V ) '
1
2

Vρc Tc a∆ρ2 + . . . . (55)
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Correlation Functions IX

This suggests to use in (53) approximately

H + pV ' Ec + pc Vc +
1
2
ρc Tc a

∫
(n̂(r)− ρc )2 d3r . (56)

With this for T > Tc

Cp '
(ρc Tc a)2

4kB Tc
V

∫ {
〈n̂2(r)n̂2(0)〉 − 〈n̂2〉2

}
d3r

'
(ρc Tc a)2

4kB Tc
V

∫
g2(r)d3r . (57)

Substitute into this (45) and (49) we get

Cp ∼ (T − Tc )−1/2 , (58)

hence, a divergence of the specific heat at the critical point in qualitative agreement
with experiments. This calculation goes beyond the previous one as it takes, at least
to some degree, as fluctuations are taken into account which become particularly
important especially in the vicinity of the critical point, A corresponding divergence is
obtained for T < Tc .
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Correlation Functions X

We now come back to the Markov processes and examine the correlation with regard
to the time that prevails at the critical point. This requires some definitions.

Let f = {f (x)}x∈S → R ∈ L2π and P be a stationary Markov chain with stationary
distribution π. Then with {ft} := {f (Xt )} we have a stationary stochastic process.
We define

µf := 〈ft〉 =
∑

x f (x)πx (average)

Cff (t) := 〈fs fs+t〉 − µ2f =
∑

x,y f (x)
[
πxφ

(|t|)
xy − πxπy

]
f (y)

non normed auto-correlation function.

φff (t) := Cff (t)/Cff (0)

normed auto-correlation function.

τexp,f := limt→∞ sup t
− log |φff (t)|

exponential auto-correlation time.

τexp := supf τexp,f
is the relaxation time of the slowest mode.

τint,f := 1
2
∑∞

t=−∞ φff (t) = 1
2 +

∑∞
t1= φff (t)

integral auto-correlation time.
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Now consider a Markov process where we measure f . We make n observations, then

f̄ :=
1
n

n∑
t=1

ft (59)

for the variance

σ =
1

n2

n∑
r,s=1

Cff (r − s) (60)

=
1
n

n−1∑
t=−(n−1)

(
1−
|t|
n

)
Cff (t) (61)

≈
1
n
2τint,f Cff (0) n� τ where φff (t) ∼ e−|t|/τ . (62)

In other words, in a Monte Carlo simulation or in an experiment, the correlation of the
configurations leads to a reduction in the accuracy:

Instead of n independent observations we only get n/2τint,f .

Interpretation:
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τexp controls the number of observations that must be neglected before starting
to count a quantity

τint controls the correlation

In the thermodynamic limit we have for the relaxation time τ

τ ∼ ξz ∼ (1− T/Tc )−νz

(rule: ξ ↔ L)

⇒ τmax ∼ Lz (T = Tc )

In the case of the Ising-model we get for the fluctuations of the magnetization

〈
(δM)2

〉
=

2τmax

tobs

[〈
M2〉

Tc
− 〈|M|〉2Tc

]
=

2τmaxχ
,
max kB Tc

tobs Lα
∼ Lz+γ/ν−d/tobs
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Since Lz+γ/ν ≈ Ly (d ≤ 4) we obtain:

to increase the accuracy by a factor of 10 we need 10y more computing time.
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M
-1

A

(nl)

M
τ t

Figure 16: Non-linear relaxation time
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Phase Diagrams for Macromolecules I

The Flory-Huggins theory of polymer solutions is based on a lattice theory. It is a
mean-field theory.

Macromolecules occupy 30 percent of the volume of the cell, strongly influencing
inter-molecular interactions. The density of the molecules causes like species to phase
separate into different regions of the cell, leading to macromolecular
compartmentalization.

We consider a solution of solvent molecules and polymers (see Figure 17). For
simplicity we assume that the monomers of the polymer with length N have the same
size as the solvent molecules. We further simplify by constraining the polymers and
the solvent molecules to be on a lattice. This gives us the possibility to count the
number of putting a polymer at n lattice sites with coordination number q. Let N1 be
the number of solvent molecules and N2 be the number of polymers (n = N1 + NN2).
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Figure 17: Lattice statistics for polymers as considered in the Flory-theory

52 / 71



Phase Diagrams for Macromolecules III

We assume that the polymer molecules are numbered and are placed on the lattice
one after the other according to their numbers. If the number of possible ways to
place the i-th monomer after the one has placed the first i − 1 polymers is called νi ,
then the number of ways to place all the other polymers on the lattice is given by
ν1ν2 · · · νN2 . Since we cannot distinguish the polymer monomers, we must have

W =
1

N2!

N2∏
i=1

νi (63)

for the number of configurations. Next we need to approximate νi . We have
numbered the monomers along the chain by 1, 2, 3, ...,N. We place the monomers on
the lattice according to their ordering. The first monomer can be placed anywhere on
a free lattice site. The number of possible ways to do this is

n − N(i − 1) . (64)

The second monomer needs to be placed on one of the q nearest-neighbours. We
make the approximation that one can replace the probability of finding a neighbour
site occupied by the polymers one has already placed by the probability one would
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have if all other monomers were distributed randomly over the lattice. From this
assumption one obtains

q[1− N(i − 1)/n] (65)

for the number of ways for doing so. The third monomer needs to be placed to a
nearest-neighbour site to the second monomer. One of the neighbour sites has already
been taken therefore we get

(q − 1)[1− N(i − 1)/n] (66)

for the third monomer. If we neglect the possibility that the fourth monomer happens
to be placed next to the first monomer we find the same situation for the fourth as for
the third monomer. Let σ be the symmetry number of the polymer which is 2 for a
polymer which is symmetric with respect to the center and 1 otherwise. Then we have

νi =
n

σ
q(q − 1)N−2

[
1−

N(i − 1)

n

]N

, (67)
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because it does not matter from which end we start laying down the polymer on the
lattice. Substituting this expression into 63 we obtain

W =
qN2 (q − 1)N2(N−2)

N2!σN2
nN2

N2∏
i=1

[
1−

N(i − 1)

n

]N

(68)

=
qN2 (q − 1)N2(N−2)

N2!σN2
n−(N−1)N2

[
NN2 (n/N)!

(N1/N)!

]N

. (69)

The vacant sites must be filled with the solvent. Hence the whole solution is
determined by the configuration of the polymers and also the entropy of the solution is
given by

S = kB lnW . (70)

Inserting 69 into this we get

S(N1,N2) = N2kB ln
q(q − 1)N−2

σeN−1 − kB

[
N1 ln

N1

n
+ N2 ln

N2

n

]
. (71)
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We can obtain this result from a purely thermodynamic consideration. Assume that
we have two species each obeying the ideal gas law (P = nRT/V ). The gases are in a
container speparted by a wall. We first expand one of the gases isothermally then the
work integral we

W =

∫ V1+V2

V1
PdV = n1RT

∫ V1+V2

V1
V−1dV (72)

and hence

W = n1RT ln
V1 + V2

V1
(73)

or

∆S1 = n1R ln
V1 + V2

V1
. (74)

For the second gas we find

∆S2 = n2R ln
V1 + V2

V2
(75)
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So that in total we get

∆S = ∆S1 + ∆S2 = n1R ln
V1 + V2

V1
+ n2R ln

V1 + V2

V2
(76)

= −R

(
n1 ln

V1

V1 + v2
+ n2 ln

V2

V1 + v2

)
(77)

The model has some restrictions. First, there is no change of volume during mixing.
Second, the entropy of mixing is entirely given by the number of rearrangements
during mixing. The enthalpy of mixing is caused by interactions of different segments
after the dissolution of interactions of the same type of segments.

We shall assume that there is random mixing of two polymers with no volume change.
Then the combinatorial entropy of mixing is given by

∆S = −R

(
c1

N1
ln c1 +

c2

N2
ln c2

)
(78)

with ci being the volume fraction of the component i and Ni the number of
monomers. Here R is the gas constant.
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If we assume the concept of regular solutions and assuming pair interactions then, in
the framework of a mean-field theory, we obtain for the enthalpy of mixing

∆H = RTχc1c2 . (79)

Here χ is the Flory-Huggins parameter assumed not to be a function of the
composition. The Flory-Huggins equation is now given by

∆F = RT

(
c1

N1
ln c1 +

c2

N2
ln c2 + χc1c2

)
. (80)

Before we continue to examine the free energy we shall first look at model for the
internal energy. Let n = N1 + N2, i.e. we consider monomers at the moment. We
introduce concentrations for the cell for the two species, solvent molecules and
nomomers c1i and c2i in the i-th cell. Since

c2i = 1− c1i (81)

we can introduce ci ≡ c1i with
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N1 =
n∑

i=1

ci , N2 =
n∑

i=1

(1− ci ) . (82)

With these we can write down an interaction Hamiltonian

H({ci}) =
∑

µ,ν=1,2

∑
i,j

Vµν
i,j cµi cνj (83)

=
∑
i,j

{
V 11

ij ci cj + V 22
ij (1− ci )(1− cj ) + 2V 12

ij ci (1− cj )
}
. (84)

Let

si =

{
+1 if cell i is occupied by a solvent molecule
−1 if cell i is occupied by a solute molecule

(85)

then the above Hamiltonian reduces to the Ising model, if we let
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Jij ≡ V 12
ij −

1
2

(V 11
ij + V 22

ij ) (86)

Vµν ≡
∑

j

Vµν
j1 (87)

J ≡
∑

j

Jj1 (88)

and hence

H({ci}) = −
1
2

∑
ij

Jij si sj +
V 11 − V 22

2
+

n

2
J . (89)

It follows that the internal energy within this model is given by

U/n = −2J

(
c −

1
2

)2
+ Kc + const (90)

with the segment concentration
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c =
N · N2

n
. (91)
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Figure 18: Free energy and phase diagram for macromolecular solutions

With eqs 80 and 90 we obtain for the free energy

F/n = −2J

(
c −

1
2

)2
+ T

{ c

N
ln

c

N
+ (1− c) ln(1− c)− χ

c

N
+ const

}
(92)

Figure 18 shows the free energy and the resulting phase diagram. For large values of T

only one minimum exists irrespective of the concentration. The system will be in the
one-phase region. For low temperatures we get a situation as shown in figure 18. Note
that the free energy has two inflection points defining spinodal points by the condition

∂2F

∂c2
= 0 (93)

and hence

4J

T
=

1
Nc

+
1

1− c
. (94)

The states within these inflection points are unstable, while the states between the
coexistence curve (also called binodal) are metatstable. The spinodal touches the
binodal at the critical point. For the critical concentration we obtain

0 = −
1

Nc2
+

1
(1− c)2

(95)

and hence

ccrit =
(
1 + N−1/2

)−1
. (96)

For the critical temperature we obtain

TMF
c =

4J

1 + 2N1/2 + N−1
, (97)

where the superscript indicates that we have obtained the result within a mean-field
theory. As N →∞ we find

TMF
c → 4J (98)

and

ccrit = 0 . (99)

To understand this point better we consider the osmotic pressure describing the
tendency of the polymers to disperse in the solution

Π = −
∂

∂V
[F (c)− F (0)]|NN2=fixed (100)

Since V = n (the cell volume = 1) we have

−Π =
∂(∆F )

∂n
|N=fixed (101)

=
∂

∂1/c

(
∆F

N

)
|N=fixed (102)

= −c2
∂

∂c

(
∆F

n

)
(103)

Substituting eq 92 for F we find

Π = −2Jc2 + T
{ c

N
− c − ln(1− c)

}
. (104)

For c � 1 we get

Π = T
c

N
+

(
T

2
− 2J

)
c2 + O(c3) . (105)

The first term is the ideal gas result and the second term is the second virial
coefficient. J is thus the effective attraction between polymers. For T = 4J we have
the ideal gas result even for large c singling out this temperature as the
theta-temperature (see Figure 19).

T

c

Tθ

θ-Punkt

Tc

ccrit

good solvent

bad solvent

Spinodal

Binodal

Two-Phase-Region

Critical Point

Figure 19: Phase diagram for macromolecular solutions

In the region where c/N � c2 the macromolecules will be well separated (ideal gas).
For c∗ = 1/N we will have the beginning of the overlap of macromolecules. In the
concentration region

c∗ � c � 1 (106)

we find

Π ≈ c2 . (107)

We can now define the temperature, where the second virial coefficient vanishes as the
θ-temperature. Below this temperature the chain shows the statistics of a
self-avoiding random walk. Above the chain conformations can be statistically
considered as those of a random walk.

Figure 20: (top) A series of fluorescence micrographs of vesicles and monolayers of 1:1
di(18:1)PC / di(16:0)PC with varying cholesterol. Scale-bars are 20µm for vesicles and 10µm
for monolayers. From left to right, the phases are solid-liquid coexistence, coexisting liquid
phases, and either one uniform liquid phase (in vesicles), or coexisting liquid phases (in
monolayers). (bottom left) Miscibility transition temperatures for vesicles. Points at low
cholesterol represent melting of the solid phase. Filled points mark miscibility transi- tion
temperatures for two liquid phases. Temperatures from 10C-50C are experimentally accessible.
Error bars represent standard deviations over multiple measurements. (bottom right)
Miscibility transition surface pressures for monolayers. The change of contrast is marked by a
vertical gray dashed line. For all domains ≥10µm, striping of domains was seen near the
transition. Striping may occur in smaller domains beyond our resolution. In all cases, curves
are drawn to guide the eye and are not explicit fits of the data. (taken from the PhD-thesis
Liquid Immiscibility in Model Bilayer Lipid Membranes by Sarah L. Veatch, University of
Washington, 2004)

Figure 21: Giant vesicles observed near the miscibility transition. (a) Domain ripening through
time in a vesicle of 1:1 DOPC/DPPC + 25 % Chol. Although the proportion of dark phase
increases in one hemisphere, it is roughly constant in time over the entire vesicle. (b) Time
sequence suggesting spinodal decomposition in a vesicle of 1:1 DOPC/DPPC + 35% Chol. (c)
Viscous fingering in a vesicle of 1:9 DOPC/DPPC + 25% Chol (left series) and 1:1
DOPC/DMPC + 25% Chol (right series) as temperature is raised through the miscibility
transition. The uniform stripe-widths shown at the left is unique to this vesicle composition.
All vesicles are roughly 30µm in diameter. (taken from the PhD-thesis Liquid Immiscibility in
Model Bilayer Lipid Membranes by Sarah L. Veatch, University of Washington, 2004)

Flory Huggins free energy

F =

∫
dV
[
φ lnφ+ (1− φ) ln(1− φ) + ξφ(1− φ) +

κ

2
(∇φ)2

]
(108)
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Excercises I

Exercise 1: van der Waals
Consider the van der Waals equation of state

P =
NkT

V − Nb
−

N2a

V 2

a) Why is the critical point given by

∂P

∂V
=
∂2P

∂V 2 = 0 ?

b) Show

Vc = 3Nb, Pc =
a

27b2 kTc =
8a

27b

and obtain the law of corresponding states

p =
8τ

3v − 1
−

3
v2

where p = P/pc , v = V/Vc and τ = T/Tc .
c) Expand this equation up to cubic order in φ and t where v = 1 + φ and

τ = 1 + t.
d) Show for the critical exponent γ = 1 (compressibility).
e) Assume P = − ∂F

∂V |T and obtain the Gibbs free energy G = F + PV .
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Exercise 2: Convexity
A magnetic spin system is in equilibrium at temperature T . Let µ be the
magnetic moment of a spin and M the average magnetization per spin
hence −µ < M < µ. Let F (M) be the free energy per spin for a given
magnetization .
Compute the field H, for a given free energy

F (M) = λ

{
0, |M/µ| ≤ 1/2
(|M/µ| − 1/2)2, 1 ≥ |M/µ| ≥ 1/2 ,

where λ is constant.

Exercise 3: Two-dimensional Gas
Consider a two-dimensional monatomic gas of N particles of size M at
temperature T that only moves in the xy -plane. The volume thus
becomes the area and the pressure is defined as the force per unit length.

What is the number of molecules with velocities between v and v + dv? (All
assumptions for the classical velocity distribution should apply.)
Calculate the specific heat for a constant area. (Relationship between
pressure, temperature, etc.)
Calculate the specific heats at constant area (CV ) and at constant pressure
(CP )
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Give a formula for the number of molecules that meet a unit length (the
area limit) during a time unit.

Exercise 4: Zipper-model
The partition function of the Zipper model ist given by

ZN =
1− xN

1− x
, x = G exp(−βε)

We now want to investigate whether the system has a phase transition in
relation to the order parameter 〈s〉.

Expand ln ZN around x = 1 + η für η � 1 and then expand 〈s〉 for η � 1
and N � 1.
Show that the fraction of open linker at η = 0 in the thermodynamic limit
shows a jump discontinuity. Hence, show that 1

N
d〈s〉
dη diverges. Such an

order parameter behaviour points to phase transition of first order.
Determine Tc .

Exercise 5: Modified van-der-Waals Gas
The modified van der Waals gas has the following equation of state with
molar volume v :

(p +
a

Tv2
)(v − b) = RT (n > 1)
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Determine pc , vc und Tc .
Can you rewrite the equatioon of state into a universal form where the
constant a and b do not feature in.
Determine the critical exponents γ (defined by κT ∼ | T−Tc

Tc
|−γ) and δ

(defined by p − pc ∼ |v − vc |δ at T = Tc ). Expand the equation of state
around the critical point.

Exercise 6: Binary Mixture
We consider a system that consists of two types of molecules (A and B)
on a cubic lattice. Each lattice site can be occupied by either a molecule
of type A or B, whereby each atom can only interact with the six direct
neighbors. We assume an interaction energy −J between neighboring
molecules of the same kind (A− A and B − B), while pairs A− B do not
interact. The total number of lattice positions is N, the number of atoms
of type A is NA, the number of atoms of type B is NB (N = NA + NB)

Estimate the total energy of the system assuming that the atoms are
randomly placed on the N lattice sites, i.e. each lattice site is occupied by a
molecule A with probability NA/N and a molecule B with probability NB/N.
Calculate the entropy of this mixture using the same assumption.
In this approximation, write the free energy F (x) as a function of
x = (NA − NB )/N. Develop F (x) up to the fourth order and show that the
free energy is no longer convex below a critical temperature Tc . Specify Tc

Plot F (x) for T < Tc , T = Tc and T > Tc .
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Exercise 7: Consider the Ginzburg-Landau Hamiltonian

βH =

∫
dx

{
t

2
m2 + um4 + vm6 +

κ

2
(∇m)2 − hm

}
with u > 0 and v = 0. If u < 0, then a positive v is necessary to ensure
stability.

By sketching the free energy F (m) for various values of t, show that there is
a first order phase transition for u < 0 and h = 0.
For h = 0 and v > 0 plot the phase boundary in the (u, t) plane, identifying
the phases, and the order of the transition. (The special point u = t = 0
separating the first and second order phase boundaries is called a tricritical
point).
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Exercise 8: Potts Model
Consider Potts spins si = (1, 2, . . . , q), interacting via the Hamiltonian

−βH = K
∑
<i,j>

δsi ,sj

To treat this problem graphically at high temperatures, the Boltzmann
weight for each bond is written as

exp(Kδsi ,sj ) = C(K)[1 + T (K)g(si , sj )],

with g(s, s′) = qδs,s′ − 1. Find C(K) and T (K)

a) Show that

q∑
s=1

g(s, s′) = 0,
q∑

s=1
g(s1, s)g(s, s2) = qg(s1, s2), and

q∑
s,s′

g(s, s′)g(s′, s) = q2(q−1)

68 / 71



Excercises VII

b) An alternative is obtained by starting with

exp(Kδsi ,sj
) = 1 + v(K)δsi ,sj

where v(K) = eK − 1. In this case, the sum over the spins does not remove
any graphs, and all choices of distributing bonds at random on the lattice is
acceptable (see lecture).

i) Including a magnetic field h
∑

i δsi ,1, show that the partition function takes
the form

Z(q,K , h) =
∑

all graphs

∏
clusters c in graph

[
v nc

b (q − 1 + ehnc
s )
]

where nb
c and nc

s are the number of bonds and sites in the cluster c. This is
known as the random cluster expansion (Fortuin-Kasteleyn expansion).

ii) Show that the limit q → 1 describes a percolation problem, in which bonds
are randomly distributed on the lattice with probability p = v/(v + 1).

iii) Show that in the limit q → 0, only a single connected cluster contributes to
leading order. The enumeration of all such clusters is known as listing
branched lattice animals.
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